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Abstract

This paper considers the local dynamic coupling between closely spaced actuator–sensor pairs mounted on a light

honeycomb structure, with an accelerometer as a sensor and either force or piezoceramic actuator. This initial work is

carried out on a resiliently mounted honeycomb beam structure and it is found that the compliance of the honeycomb core

significantly affects the coupling if the actuator and sensor are closely located on opposite sides of the beam. The

experimentally observed local dynamic coupling is modelled by a single-degree-of-freedom mass–spring–damper system.

The effect of this coupling on the stability and performance of a direct velocity feedback control system is examined, and is

shown to provide an inherently stabilising mechanism when using a piezoceramic actuator.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The control of vibration in honeycomb structures is important in a number of applications, particularly the
reduction of interior noise in aircraft by reducing the vibration of trim panels. Trim panels are typically light
honeycomb structures, but have complicated shapes. In order to begin investigating the active control of such
structures, this paper considers the coupling between closely located pairs of actuators and sensors, which may
be used to implement local feedback loops, on simple honeycomb beam structures. The sensor is assumed to
be a conventional accelerometer, whose output can be integrated to give the velocity signal which is fed back
to the actuator. Both force actuators and piezoceramic actuators are considered since the former is an
idealisation that should provide an unconditionally stable control system [1,2] and the later can be integrated
into a structure and may provide a way of practically achieving multiple local control loops on practical
structures [3,4].

When implementing an active control system for a honeycomb structure, the effects of the masses due to
sensors and actuators of the control system must be accounted for, since their mass is comparable to that of
the honeycomb structure. Furthermore, when the sensors are located on the one of the skins of the honeycomb
structure, and the actuators are located on the other skin, the two masses are coupled dynamically due to the
finite stiffness of the core shell in the vertical direction [5]. A similar situation can be found in the analysis of
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Fig. 1. Typical wave dispersion curves for honeycomb beams as predicted using the model of Nilsson [13] (aNilsson
propagating, bpropagating, bevanescent

and ZNilsson
propagating) and those as predicted using an equivalent Timoshenko beam model (apropagating, bpropagating and bevanescent).
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sandwich beams with honeycomb truss core [6], or truss-like beams [7,8]. The response of these structures can
be divided into two frequency zones. In the low-frequency range, honeycomb beams can be modelled as an
equivalent homogeneous beams using the composite material theories [9], the structural mechanics of the unit
cell elements of the honeycomb structure [10,11], or by energy considerations [12]. This frequency range is
limited by the existence of lumped masses and stiffnesses on the honeycomb structure and by the existence of
the intracell resonances when the frequency is quite high such that the wavelengths become the order of the
length of the core. Above these frequencies, the equivalence of the honeycomb core as a homogeneous
structure fails, and the behaviours of the intracells must be modelled, using the transfer matrix method [7,8]
and the spectral element method [6] for example.

However, in this paper we investigate the dynamic coupling that can occur at low frequencies, due to the
masses and stiffness of the sensors/actuators. Nilsson et al. [13] modelled a honeycomb beam as a tightly
bonded three-layered beam consisting of the two skins and honeycomb core. Fig. 1 shows the dispersion
curves of a typical honeycomb structure. In additional to the waves from the classical Timoshenko beam
model, a near-field wave is predicted, denoted by the faint dashed line in Fig. 1 as predicted by Nilsson. At
lower frequencies the wavenumber of the near-field wave, Z, is independent of frequency, indicating that it
describes the local static deflection of the skin. The local static deflection is due to the stiffness of the
honeycomb structure in the thickness direction. This stiffness gives rise to the dynamic coupling of the
sensor–actuator pairs.

In this paper, this local dynamic coupling is investigated experimentally and theoretically on a honeycomb
beam structure. It is found to provide an inherent stabilising mechanism for direct velocity feedback control
systems when using the piezoelectric actuators.

2. Dynamics of a honeycomb beam

2.1. Equation of motion

Using first-order shear deformation theory (FSDT) [9,14], leading to an equivalent homogeneous beam
model in the low-frequency regime, the equation of motion of a honeycomb beam can be obtained as

q
qx

KA55
qw0

qx
þ fx

� �� �
þ qðx; tÞ ¼ I0

q2w0

qt2
, (1)
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Fig. 2. Configuration of honeycomb beams where L, hc, and hs are the length of the honeycomb beam, the height of the honeycomb core,

and thickness of the skin. The width of the honeycomb beam is to be b. fx is the rotation angle of the cross-section.
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where w0 and fx are the transverse displacement of the mid-surface of the beam and the rotational angle of the
cross-section of the beam. Also, Tðx; tÞ and qðx; tÞ are the applied moment and force per unit length as shown
in Fig. 2. K is the shear correction factor which is assumed to be K ¼ 5=6 for a rectangular section. The
stiffness A55 in Eqs. (1) and (2) can be evaluated as

A55 ¼ 2GðsÞxzhs þ GðcÞxz hc ’ GðcÞxz hc, (3)

where GðsÞxz and GðcÞxz are the shear modulus of the skin and core, respectively, and hs and hc are the thickness of
core and skin, respectively. Also, the mass density, I0, and the rotary inertia, I2 can be obtained as

I0 ¼ rðcÞhc þ 2rðsÞhs, (4)

I2 ¼ rðcÞ
h3

c

12
þ rðsÞ

h2
chs

12
þ hch2

s þ
2h3

s

3

� �
, (5)

where rðcÞ and rðsÞ are densities of core and skin, respectively. The stiffness, D11, can be evaluated as

D11 ¼ EðcÞxx
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where the superscript ðsÞ indicates the properties for the skins and ðcÞ for the core, b is the width of the beam,
and I ðsÞyy is the cross-sectional second moment of inertia of the skin with respect to the mid-surface.

The beam is assumed to be resiliently mounted. The boundary conditions can be obtained from the force
and moment equilibrium at x ¼ 0 and L [15], so that, at x ¼ 0

V ¼ KA55
qw

qx
þ fx

� �
¼ �ksw� cs _w; M ¼ D11

qfx

qx
¼ 0 (7)

and at x ¼ L

V ¼ KA55
qw

qx
þ fx

� �
¼ kswþ cs _w; M ¼ D11

qfx

qx
¼ 0, (8)

where V and M are the shear force and the bending moment per unit width, and ks and cs are the spring
constant and the damping coefficient of the mounts.

The response of the honeycomb beam to a concentrated force at xf and a concentrated moment at xT can be
expressed as

wðx; tÞ ¼
X1
m¼1

ejomt

ðo2
m þ 2jzmoom � o2Þ

ffW mðxf Þ þ TFmðxT ÞgW mðxÞ

� �
(9)
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and

fðx; tÞ ¼
X1
m¼1

ejomt

ðo2
m þ 2jzmoom � o2Þ

ffW mðxf Þ þ TFmðxT ÞgFmðxÞ

� �
, (10)

where zm is the modal damping term added to take into account the structural damping, and W mðxÞ and FmðxÞ

are modal functions for the lateral and angular displacements, evaluated in Appendix A.
3. Experimental observation of local actuator/sensor coupling

In this section, the dynamic coupling of the actuator–sensor pair in honeycomb structure is investigated
experimentally. The geometrical data of the honeycomb beam are listed in Table 1. Its mechanical properties
are estimated using the procedure given in Ref. [13]. The response functions are obtained between the
actuation, either force or moment pair, and the velocity measured by either an accelerometer or laser
vibrometer with and without local mass as shown in Fig. 3. The arrangements take into account the type of the
actuator, the mass of the sensor and the location of the mass loading. A massless sensor is accomplished by
using the laser vibrometer (PSV-300). The dummy mass whose weight, 2.5 g, is the same as that of the
accelerometer used is to see the effect of the local mass. The force actuator, LDS V101, is fixed on a hard and
rigid test bed to improve signal-to-noise ratio, exciting the beam. The piezoceramic actuator having the size of
13mm� 13mm and weight of 3 g is bonded tightly on the skin of the honeycomb structure.

Fig. 4 shows the measured response functions for the force actuator–sensor pair arrangements shown in
Fig. 3(a). Distinct bending modes appear at low frequencies below 2 kHz, and their phase characteristics are
always between the �90� for the configuration in which the laser vibrometer is used. It can be seen that the
response function between the force applied on one side and the velocity measured with an accelerometer on
the other side has strong coupling behaviour at about 4.5 kHz. At this frequency, the phase of the frequency
response is shifted by �180�, and the magnitude decreases at the rate of 12 dB/oct. Comparing the response
functions from configuration F02 and F03, it is found that this does not occur if the lumped mass is on the
same side of the honeycomb as the applied force.

To explore the characteristics of the local coupling further, the response functions were measured under
different conditions; changing boundary conditions, the length of the beam and the mass of the sensor. The
arrangement for clamping the beam at 0:4L and 0:6L and doubling the mass of the sensor is shown in Fig. 5.
The response functions under six different conditions, together with free–free beam of length L, are compared
in Fig. 6. In high frequencies, only the mass of the sensor affects to the broad peak due to the coupling in the
mobility function, decreasing the resonance frequency. When the mass is doubled, the resonance frequency
does not, however, decrease by the factor of

ffiffiffi
2
p

, which means that the local coupling mechanism interacts
with the dynamics of honeycomb beam. Since the beam length and the boundary condition do not influence
the high-frequency response, it is an evidence that the response at high frequencies is dominated by the local
dynamics of the actuator–sensor pair.
Table 1

Geometry and material parameters of the honeycomb beam

Parameters Symbol Unit Values

Length L m 0.51

Width b m 0.04

Thickness of skin hs mm 0.5

Thickness of core hc mm 3

Density of skin rðsÞ kg=m3 507

Density of core rðcÞ kg=m3 169

Shear modulus of core GðcÞzx
MPa 13.7

Young’s modulus of skin EðsÞxx
GPa 14.8
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Fig. 3. Actuator–sensor pair configuration: (a) force actuator and (b) piezoceramic.
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Fig. 4. Measured frequency responses using force actuators with configuration F01 (solid line), F02 (dashed line) and F03 (dot-dashed

line) shown in Fig. 3(a): (a) bode diagram and (b) Nyquist plot.

Fig. 5. Measurement of the frequency responses using the force actuator under the different conditions: (a) clamped honeycomb beam and

(b) doubling the sensor’s mass.
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the force applied on one side and the velocity measured at the same point on the other side. The set of curves (i) is for honeycomb beams

having an accelerometer mass of 2.5 g and (ii) is for the same beams having an accelerometer mass of 5.0 g.
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Fig. 7. Measured frequency responses using piezoceramic actuators with configuration P01 (solid line), P02 (dashed line) and P03 (dot-

dashed line) shown in Fig. 3(b): (a) bode diagram and (b) Nyquist plot.
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Fig. 7 shows the measured response functions of the honeycomb beam from a piezoceramic actuator
attached to one side of the honeycomb beam and the velocity measured at the centre of the piezoceramic on
the other side under the different configuration of lumped mass shown in Fig. 3(b). The distinct bending
modes can also be found at low frequencies with their phase between the �90�, as in the case of the force
actuation, but the bending modes are predominant up to 5 kHz. There does not appear to be a peak in the
response due to the local dynamics in higher frequency range in this case. However, it can be seen that the
response functions in the higher frequencies for the three arrangements, shown in Fig. 3(b), are quite different.
The response of the beam without the lumped mass measured by the laser vibrometer increases up to 30 kHz
and then decreases showing a peak. This peak is considered to be the effect of the in-plane resonance of the
piezoceramic patch. This peak can be seen from the response of the beam with the lumped mass located on the
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Fig. 8. Measurement of the frequency responses using piezoceramic actuator under the different conditions: (a) clamped honeycomb beam

and (b) doubling sensor’s mass.

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

M
o

b
ili

ty
 (

d
B

)

0

100

200

P
h

a
s
e

 (
d

e
g

re
e

)

(i) 

(ii) 

(i) 

(ii) 

(ii) 

(i) 

-110

-100

-60

-70

-80

-90

-100

-200

Fig. 9. Measured frequency responses for three different boundary conditions where the set of curves (i) is for honeycomb beams having

an accelerometer mass of 2.5 g and (ii) is for the same beams having an accelerometer mass of 5.0 g.

C. Hong, S.J. Elliott / Journal of Sound and Vibration 302 (2007) 117–137 123
actuator side. This response is depressed in the frequency range from 10 to 30 kHz due to the lumped mass.
The mass, however, does not make the response roll off as much as the accelerometer located on the opposite
skin of the actuator location does. Although, there is no obvious peak in the high frequencies when the
accelerometer is located on the opposite side of the actuator location of the honeycomb beam, the response
does roll off with the same rate of 12 dB/oct as that for the force actuation.

For the piezoelectric actuation, the response functions are again measured under different conditions,
changing boundary conditions, the length of the beam and the mass of the sensor. The arrangement for
clamping the beam at 0:4L and 0:6L and doubling the mass of the sensor is shown in Fig. 8. The response
functions under these different conditions are shown and compared in Fig. 9. The mass of the accelerometer
affects the response functions decreasing the resonance frequency, as expected, although it is not apparent.
The beam length and the boundary condition do not influence the response function at high frequencies too;
so the response at the high-frequency is dominated by the local dynamics of the sensor and actuator. It is
concluded that the local coupling does exist between the piezoceramic actuator and the sensor, although it is
highly damped.
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4. Modelling of the local dynamic coupling

In this section, the local dynamic coupling is modelled as an additional single degree of freedom (sdof)
system added to the dynamics of a beam. It is believed that this behaviour is caused by the locally added mass
of the sensor and actuator and the local stiffness of the honeycomb structure. For the force actuation, the local
parameters can be obtained from the transmissibility between both skins at the location of the actuator–sensor
pair. The transmissibility, TR, can be expressed by

TR ¼
vU

vL

¼
jocu þ ku

�muo2 þ jocu þ ku

, (11)

where vU and vL are the velocity at the sensor location and the actuator location, respectively, mu is the mass
of the sensor, 2.5 g in this case, and cu and ku are the local damping and stiffness to be found from the
transmissibility measurement. Note that the transmissibility between both skins modelled by the sdof system
does not depend on the beam’s properties, its dynamics or the lumped mass at that location, but only depends
on the local parameters (Fig. 10). In Fig. 11, the measured transmissibility is compared with that predicted
with several damping factors. From the centre frequency of the transmissibility, we can estimate ku ¼

1:8� 106 N=m and from its shape za ¼ cu=2
ffiffiffiffiffiffiffiffiffiffiffi
muku

p
¼ 0:025.

Using the model presented in Section 2, the coupled response (faint solid) of the force actuator to
accelerometer on the beam is calculated and shown in Fig. 12. The geometrical data and the material
properties estimated by the procedure given in Ref. [13] are listed in Table 1. The calculated and measured
frequency responses are in reasonable agreement. The predicted frequency response without the coupling
model is also shown in Fig. 12, which has the same behaviour as that measured using laser vibrometer. It can
be seen that the local coupling leads to the phase shift at the local coupling resonance and so the unstable
Nyquist loop. Hence, the feedback control system using force actuator/velocity sensor on honeycomb
structures becomes only conditionally stable.

The transmissibility between both skins with the piezoceramic actuator is now measured. In this
configuration, however, the skin of the honeycomb beam at the actuator location is covered by the
piezoceramic so that it is impossible to measure the exact transmissibility. An approximate transmissibility is,
however, obtained by measuring the velocities at the centre of the piezoactuator and the same point on the
opposite skin. Fig. 13 shows the measured transmissibility (thick solid) and calculated transmissibility of the
local area of the honeycomb beam excited by a piezoactuator for several damping factors, za, of 0.0125 (solid),
0.025 (dot-dashed), 0.2 (dashed), and 0.4 (dotted). The stiffness of the local area can be estimated as ku ¼

2:7� 106 N=m from the centre frequency. This is somewhat higher than with the force actuator, presumably
cuku

mu

ml

F

vU

vL

Fig. 10. Transmissibility model due to the local coupling.
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due to increase of the local stiffness due to the piezoceramic bonded on the local area of the honeycomb
structure. The approximate damping ratio appears to be about 0.025.

The damping factor of the local area was also estimated by comparing the measured frequency response
from piezoactuator to accelerometer with that predicted from this model for several damping factors. Fig. 14
shows the calculated frequency responses for several damping factors and the measured one. The predictions
are in reasonable agreement with the measurements below 2 kHz if the damping ratio is assumed to be 0.2.
This is somewhat higher than that measured with the laser vibrometer, presumably because of the additional
shear deformation caused by the constraining effect of the accelerometer body. The difference above 2 kHz is
due to the structure starting to behave as a plate. The natural frequency at which the half-wave length of the
corresponding mode is less than the beam width is about 2 kHz, above which the beam responds with bending
waves in the width, which causes the beam to respond with an increased level. When the beam has plate
modes, the torsional moment generated by the piezoceramic actuator also couples into the plate behaviour, so
that the response is increased even more. The measured response at frequencies above 5 kHz also shows that
no distinct modal behaviour exists. This is because the modal density due to the shear waves becomes large
enough to smooth the response due to the high modal overlapping in the real honeycomb. The predicted
response could have a similar smooth frequency dependence at the high frequencies, provided that the
damping factor is selected properly, although the magnitude is different. The response functions also display
apparent phase shifts of two kinds; one is due to the non-collation between the sensor and the actuation which
leads to the slowly shifting phase over the frequency first and then a sudden change in phase at the frequency
where the half-wave length begins to be less than the distance between the sensor and actuator. This frequency
is about 14 kHz in this case which is evaluated from the nth natural frequency such that n ¼ L=s. This phase
shift can be seen in both results around this frequency. The other phase shift which can be found at about
5 kHz is due to the local coupling. The phase shift is not as much as that shown in Fig. 12 for the force
actuation. This behaviour is thought to be due to higher damping caused by the more constrained local
interaction between the accelerometer and the piezoceramic actuator. The higher local damping and local
stiffness lead to the coupling at higher frequency, smoothing the coupling resonance peak, and reducing the
phase shift rate.
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5. Direct velocity feedback control with a piezoceramic actuator

In this section, a control system for honeycomb beams using a piezoceramic actuator is implemented, as
shown in Fig. 15, in order to estimate the effects of the local coupling on the stability and the control
performance. The honeycomb beam is supported by wire at both ends which is a mounting device having
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Fig. 15. Photographic view of the experiment.
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vertical stiffness of about 140N/m. The dimensions and estimated mechanical properties of the honeycomb
beam are listed in Table 1. The lumped masses and the stiffness and the local coupling models are included in
the theoretical model [16] shown in Fig. 16. The shaker for the primary force is modelled as a sdof mass–spring
system. The parameters in the model are summarised in Table 2.

5.1. Plant response and stability

The measurement of the plant response, from piezoceramic actuator input to integrated accelerometer
output, was performed as shown in Fig. 17. Several unconnected accelerometers and a shaker are present,
which are used later for monitoring the performance of the control system and disturbing the beam as a
primary source when measuring control performances. The plant response is measured from 0 to 20 kHz, as
shown in Fig. 18, in order to characterise the stability in the high-frequency range. It can be seen that the
magnitude of the plant response decays almost monotonically as the frequency increases, and its phase is
shifted slowly at the same time. The decay in the magnitude and the shift in phase are caused by the local
coupling of the actuator–sensor pair with the honeycomb structure. This behaviour is represented as a helical
curve approaching to the origin, in the complex plane. The response within a unit circle about the point
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Table 2

Parameters in Figs. 17(b) and 21(b)

Notation Unit Value Description

L m 0.51 Length of the beam

xp m 0:2L Location of primary source

xs m 0:8L Location of piezoceramic actuator

xv m 0:6L Location of monitoring sensor

xa m xs Location of feedback sensor

xm m 0:005 Location of mount

2s mm 13 Length of piezoceramic actuator

xs1 m xs � s Location of moment 1

xs2 m xs þ s Location of moment 2

ks N/m 143.5 Stiffness of mount

kminishaker N/m 3150 Stiffness of shaker

mð1Þu
kg 0.0025 Mass of accelerometer

kð1Þu
N/m 1:85� 106 Local stiffness of the honeycomb

cð1Þu
Ns/m

0:025� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
ð1Þ
u kð1Þu

q
Local damping of the honeycomb

mð3Þu
kg 0.0025 Mass of accelerometer

kð3Þu
N/m 2:42� 106 Local stiffness of the honeycomb

cð3Þu
Ns/m

0:2� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
ð2Þ
u kð2Þu

q
Local damping of the honeycomb

m
ð1Þ
l

kg 0:0025þ 0:0067 Mass of moving coil in minishaker and accelerometer

m
ð2Þ
l

kg 0.0025 Mass of accelerometer

m
ð3Þ
l

kg 0.0125 Mass of piezoceramic actuator

f p N NA Primary force

Ts Nm NA Secondary moment pair

vr m/s NA Feedback velocity

Signal Gen.

PLANT

Vi

Vo

PZT

Conditioning Amplifier
        (B&K 2635)

 Power Amplifier
(PCB 790 Series)

Signal Analyzer
      (R9211)

Fig. 17. Schematic diagram for the measurement of the plant response of the control system using a piezoceramic actuator and its

corresponding theoretical model.
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ð�1; j0Þ, shown dashed in Fig. 18, leads to the enhancement when the feedback control is active [17]. The first
frequency crossing this unit circle occurs at 5.5 kHz in Fig. 18. When activated feedback control, this
frequency varies with the feedback gain. Fig. 19 shows the predicted plant response which is seen to predict the
measured results reasonably. It is interesting in this stage to show the plant response for the normal solid
structure when using a piezoceramic actuator. Fig. 20 shows the plant response measured for a 2mm thick
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aluminium beam of the same size as the honeycomb beam used in this study excited by the piezoceramic
actuator at the same location. It can be seen that the magnitude of the plant response in the high-frequency
range keeps at a high level, since the piezoceramic actuator effectively couple into high-frequency modes, while
the phase is slowly shifted as the frequency increases because of the non-collocation effect of the
actuator–sensor pair at high frequencies. The larger loops on the left-hand side of the Nyquist plot lead to
much poorer performance than on the honeycomb structure for a given gain margin. It is suggested for the
aluminium beam to implement a low-pass filter to enforce a high-frequency roll-off, but this can introduce
destabilising phase shifts.

5.2. Control performance

The control system for a honeycomb structure using a piezoceramic actuator is evaluated by measuring the
velocities along the beam at three points as shown in Figs. 15 and 21. A mini-shaker, LDS V101, is used to
generate disturbances on the honeycomb beam and the piezoceramic actuator is mounted at 0:8L to achieve
control. The control actuator is driven by the signal from the accelerometer, integrated by the built-in
integrator in the conditioning amplifier. The feedback gain can be adjusted by the transducer’s sensitivity
control knob and mV/UNIT OUT Switch [18]. The transducer’s sensitivity control allows the feedback gain to
be adjusted with a fine increment. The feedback gain is inversely proportional to the set value of the
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transducer’s sensitivity control knob, Sset. The measurements are performed with nine feedback gains and
without control, and at three points on the beam, at the primary source position (x ¼ 0:2L), at the secondary
source location (x ¼ 0:8L) and in between at x ¼ 0:6L. The measurement were carried out for the frequency
range of 0�10 kHz. The feedback gains used in the simulation are 200, 400 and 1000.

Fig. 22 shows the measured and predicted velocity levels at the primary source location (x ¼ 0:2L) and show
that very little attenuation is measured as predicted at this position. The differences between measurement and
simulation below 1 kHz are due to the dynamics of the force actuator. Since the dynamics of the beam at
x ¼ 0:2L is mainly governed by the local dynamics of the force actuator, and the control actuator is far from
this monitoring sensor, the velocity is not significantly reduced. The broad peak in the response at 4.5 kHz in
Fig. 22, at the shaker location, is due to the local coupling of the sensor/primary force actuator as measured in
the previous section.

Fig. 23 shows the measured and predicted velocity levels at x ¼ 0:6L. It can be seen that the control system
reduces the vibration level at this point between the primary actuator and control position by a maximum of
about 15 dB at 500Hz. There is, however, no reduction at around 1 kHz because the response is strongly
coupled with the dynamics of the mini-shaker at this frequency.

Finally, Fig. 24 shows the measured and predicted velocity levels at the secondary source location
(x ¼ 0:8L). The feedback controller is much more effective here with all resonance peaks being controlled
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the feedback control with gains of 200 (dotted), 400 (dashed) and 1000 (dot-dashed): (a) measured and (b) predicted.
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above 200Hz. The control system enhances the velocity at some frequencies and reduces it at others. For
instance, the velocity is enhanced at the frequencies between 6.5 and 8 kHz at the control location, as the
feedback gain increases, as expected from the Nyquist plot. Below 6.5 kHz, however, significant reductions in
vibration, about 20 dB, are measured at the control location.

It is clear from Figs. 22 and 23, however, that these high frequency reductions are rather local. The
advantage of the local coupling behaviour on the honeycomb beam is that it makes the feedback loop using a
piezoceramic actuator and accelerometer more stable. The disadvantage appears to be that it is difficult to
achieve global control of the vibration on the beam, although this may be due to the presence of the heavy
primary shaker in these experiments.

6. Conclusion

This paper has been concerned with local coupling between closely located actuators and sensors on
honeycomb structures. From the measurement of the frequency response using an accelerometer located on
the one of the skins of the honeycomb beam and a force actuator located on the other skin, a strong coupling
resonance was discovered. It was found that the coupling behaviour can be modelled using a single-degree-of-
freedom mass–spring–damper system whose parameters—local stiffness and damping factor—can be
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evaluated from the measured transmissibility. The prediction model including the local dynamics is validated
by comparing the measured frequency response with the predicted one including a local coupling. Another
series of experiments and simulations were performed to define the local coupling when the honeycomb beam
excited by a piezoceramic actuator. The local stiffness was reasonably approximated using the measured
transmissibility, but the local damping factor somewhat higher than that estimated from transmissibility due
to local interaction between the beam, the piezoceramic actuator and the accelerometer body. The high-
frequency roll-off provided by this coupling provides an inherent stabilising mechanism in honeycomb
structures subjected to the direct velocity feedback control system using piezoactuator-velocity sensor pair.

A control system was implemented for a resiliently mounted honeycomb beams using a piezoceramic
actuator. The calculated plant response compares reasonably well with that measured. The feedback control
system is conditionally stable, but it has a high gain margin compared to a solid beam. The high gain margin
results from the existence of the local dynamics which leads to a slowly shifting phase and high-frequency roll-
off. It is noted, however, that the local dynamics causes the controlled response to be enhanced above the
coupling frequency. The control performance is then evaluated in terms of the velocity levels at three points on
the beam; at the primary source location (0:2L), at the secondary source location (0:8L), and at 0:6L. A large
reduction in the velocity at the secondary source location can be achieved, although having enhancement at
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high frequencies. A smaller reduction is obtained away from the secondary source and hardly any reduction is
obtained at the primary source location.

Appendix A. Free vibration of a resiliently supported beam

The free vibration of honeycomb beams can be assumed to be

W ðxÞ ¼ c1e
�jax þ c2e

jax þ c3e
�bx þ c4e

bx. (A.1)

Applying the boundary conditions to Eq. (A.1) yields the eigenvalue problem so that the natural frequencies
and mode shapes can be obtained theoretically. However, as demonstrated in Ref. [19], it is impossible to
obtain the higher order mode shapes numerically due to divergence of the terms c3, c4 and ebx which include
ebL. To avoid this divergence, the dual coordinate system technique [19] is used although there is a problem at
higher values of b.

In this paper, more complete wave approach is introduced. The solution can be rewritten as the
superposition of the wave components at x as

W ðxÞ ¼ aþF e
�jax þ a�F e

jax þ aþNe
�bx þ a�Ne

bx

¼ ½1 1�PðxÞaþ þ ½1 1�Pð�xÞa�, ðA:2Þ
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where the ð2� 2Þ matrix, PðxÞ, called the propagation matrix, is of the form

PðxÞ ¼
e�jax 0

0 e�bx

" #
, (A.3)

for which Pð�xÞ ¼ PðxÞ�1, and the wave components, aþ and a� shown in Fig. A.1, are given by

aþ ¼
aþF

aþN

( )
and a� ¼

a�F

a�N

( )
. (A.4)

It is noted that Eq. (A.2) is the same form as Eq. (A.1) so that the numerical divergence should occur. This is
mainly caused by the existence of the inverse of the propagation matrix in the eigenvalue problem obtained
after applying the boundary conditions to Eq. (A.2), but

a� ¼ PðLÞb�; a� ¼ R0a
þ; bþ ¼ PðLÞaþ and b� ¼ RLb

þ, (A.5)

where bþ, and b� are the wave components at x ¼ L, as shown in Fig. A.1, and R0 and RL denote the
reflection coefficient matrices at x ¼ 0 and L, respectively.

From Eq. (A.5), we can obtain

a� ¼ PðLÞRLPðLÞa
þ. (A.6)

Substituting Eq. (A.6) into Eq. (A.2), the solution can be written in terms of aþ having a well-conditioned
propagation matrix, PðL� xÞ as

W ðxÞ ¼ ½1 1�PðxÞaþ þ ½1 1�PðL� xÞRLPðLÞa
þ

¼ ½1 1�ðPðxÞ þ PðL� xÞRLPðLÞÞa
þ. ðA:7Þ

The solution for rotational angle, Fx, can be obtained by substituting Eq. (A.7) into the homogeneous
equation of Eq. (1). The distribution of Fx becomes

FxðxÞ ¼ ½jCP CN �ðPðxÞ þ PðL� xÞRLPðLÞÞa
þ, (A.8)

where

CP ¼ a�
I0o2

KA55a

� �
, ðA:9Þ

CN ¼ bþ
I0o2

KA55b

� �
. ðA:10Þ

The eigenvalue problem can be found by considering the boundary characteristics as denoted in Eq. (A.5).
Expressing it in terms of only aþ, the eigenvalue problem is of the form

ðI� R0PðLÞRLPðLÞÞa
þ ¼ 0. (A.11)
Fig. A.1. Wave components on beams and boundary conditions.
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For non-trivial solutions of aþ,

jI� R0PðLÞRLPðLÞj ¼ 0, (A.12)

so that a set of the wavenumbers can be obtained. The set of the natural frequencies can then be determined
using the dispersion equation as

k2
x ¼

1

2D11
� o2 I2 þ

I0D11

KA55

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o4 I2 þ

I0D11

KA55

� �2

þ 4D11 1�
o2I2

KA55

� �
I0o2

s8<
:

9=
;

¼
1

2D11
� o2 I2 þ

I0D11

KA55

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o4 I2 �

I0I2

KA55

� �2

þ 4D11I0o2

s8<
:

9=
;. ðA:13Þ

The reflection matrices at both ends, R0 and RL, can be evaluated considering the incident wave to the
boundary and the reflected wave from it as shown in Fig. A.1. Substituting Eqs. (A.7) and (A.8) into Eq. (7),
the reflection matrix at x ¼ 0, R0, becomes

R0 ¼
�jCP þ jaþ ~kT �CN þ bþ ~kT

aCP �bCN

" #�1
�jCP þ ja� ~kT �CN þ b� ~kT

�aCP bCN

" #
, (A.14)

where ~kT ¼ kT=KA55. Assuming that the spring constants at both ends are the same, the reflection matrices at
both ends are the same so that RL ¼ R0 ¼ R. Substituting the reflection matrix, R, into Eqs. (A.7) and (A.8),
the mode shape function can be obtained. Fig. A.2(a) and (b) show the natural modes for the transverse
displacement and the angle of the cross-sectional area, respectively, which are well defined up to 20th order
using this method.
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